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Backgrounds
The United Nation O�ce for Disaster Risk Reduction reports
that the lives of millions were a�ected by the devastating 
oods in
South Asia area and around 1,200 people died in the Bangladesh,
India and Nepal.

Figure: Jakarta Floods, by Takaki Kashiwabara, Nikkei Asian Review, September13th , 2019.1

1Reference: https://asia.nikkei.com/Economy/Jakarta-and-Bangkok-keep-sinking-as-infrastructure-projects-stall
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Motivation
Factors: climate change, increasing population density, weak
infrastructure and poor urban planning, etc.

In order to study interactions between environment and urban and
rural development, stakeholders neede�ective and e�cient
simulation models.
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Related work

Conceptual physical-based models, such as HEC-RAS [1],
SWMM [2], HEC-RAS(2D) [3], LISFLOOD-FP [4], are developed by
solving equations derived from physical laws with many hydrological
process assumptions.

Data-Driven models such as Ghalkhani [5], Khac-Tien [6] and
others [7, 8] apply the neural network model to predict 
ood with
collected gauge measurements.

Neural networks have been applied to speed up the 
uid 
ow
simulation [9]; A research team of TUM [10, 11] use the neural
networks considering temporal and spatial relation as a surrogate
model of 
uid 
ow simulation models; Other authors [12{14] use
neural networks to solve partial di�erential equations.

Qian [15] use convolutional neural networks to predict 
ood for one
speci�c region with high approximation accuracy and faster speed.
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The neural network model that we train learns a general surrogate model.

Good approximation accuracy with fast speed.

Once with trained model, it is capable to simulate directly for
spatiallydi�erent terrains and terrains ofdi�erent size .
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Methodology

The 
ood happens because the rain drives the water level to change on
the terrain region.

Problem De�nition
Given three inputs: a DEMD, the water levelH t and the rainfall intensity
I t at the current time stept , the model should output the water level
H t +1 . Thus, predicting 
ood process can be formulated as the function
L : Rl � w � Rl � w � R ! Rl � w :

H t +1 = L(D; H t ; I t )
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Numerical Model
The two-dimensional shallow water equations include two parts:
conservation of mass and conservation of momentum shown in
Equation (1) and (2),
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whereh is the water depth,g is the gravity acceleration, (u; v) are the
velocity at x; y direction, Z(x; y) is the topography elevation function and
Sfx ; Sfy are the friction slopes [16].

R. Zhang et al. (NUS) Surrogate Modelling for Neural Networks May 2020 7 / 21



Introduction Methodology Experiments Results Conclusions References

Numerical Model con't

The numerical approximations for every locationi ; j at each timestep, the
water depth could be calculated as:

H t +1
i ;j = �([ H t

i +1 ;j ; H t
i � 1;j ; H t

i ;j +1 ; H t
i ;j � 1]; I t ; D) (3)

whereH t
i ;j is the water level at locationi ; j of time stept .

[Problems] Computational expensive; Hydrology assumptions for 
ood
process; Parameter tuning...
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Proposed Neural Network Model

Figure: Architecture of the proposed Neural Network model
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Experiments

Synthetic DEM
Case 1: Train and test onOne 64� 64 DEM (same terrain).

Case 2: Train and test onMultiple 64� 64 DEMs (di�erent
terrains).

Figure: Three types of synthetic DEM with size 64 � 64.
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